\(\int x^3 \cot (a+b x) \, dx\) [1]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 101 \[ \int x^3 \cot (a+b x) \, dx=-\frac {i x^4}{4}+\frac {x^3 \log \left (1-e^{2 i (a+b x)}\right )}{b}-\frac {3 i x^2 \operatorname {PolyLog}\left (2,e^{2 i (a+b x)}\right )}{2 b^2}+\frac {3 x \operatorname {PolyLog}\left (3,e^{2 i (a+b x)}\right )}{2 b^3}+\frac {3 i \operatorname {PolyLog}\left (4,e^{2 i (a+b x)}\right )}{4 b^4} \]

[Out]

-1/4*I*x^4+x^3*ln(1-exp(2*I*(b*x+a)))/b-3/2*I*x^2*polylog(2,exp(2*I*(b*x+a)))/b^2+3/2*x*polylog(3,exp(2*I*(b*x
+a)))/b^3+3/4*I*polylog(4,exp(2*I*(b*x+a)))/b^4

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3798, 2221, 2611, 6744, 2320, 6724} \[ \int x^3 \cot (a+b x) \, dx=\frac {3 i \operatorname {PolyLog}\left (4,e^{2 i (a+b x)}\right )}{4 b^4}+\frac {3 x \operatorname {PolyLog}\left (3,e^{2 i (a+b x)}\right )}{2 b^3}-\frac {3 i x^2 \operatorname {PolyLog}\left (2,e^{2 i (a+b x)}\right )}{2 b^2}+\frac {x^3 \log \left (1-e^{2 i (a+b x)}\right )}{b}-\frac {i x^4}{4} \]

[In]

Int[x^3*Cot[a + b*x],x]

[Out]

(-1/4*I)*x^4 + (x^3*Log[1 - E^((2*I)*(a + b*x))])/b - (((3*I)/2)*x^2*PolyLog[2, E^((2*I)*(a + b*x))])/b^2 + (3
*x*PolyLog[3, E^((2*I)*(a + b*x))])/(2*b^3) + (((3*I)/4)*PolyLog[4, E^((2*I)*(a + b*x))])/b^4

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 3798

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Dist[2*I, Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6744

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[(e + f*x)^m*(PolyLog[n + 1, d*(F^(c*(a + b*x)))^p]/(b*c*p*Log[F])), x] - Dist[f*(m/(b*c*p*Log[F])), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rubi steps \begin{align*} \text {integral}& = -\frac {i x^4}{4}-2 i \int \frac {e^{2 i (a+b x)} x^3}{1-e^{2 i (a+b x)}} \, dx \\ & = -\frac {i x^4}{4}+\frac {x^3 \log \left (1-e^{2 i (a+b x)}\right )}{b}-\frac {3 \int x^2 \log \left (1-e^{2 i (a+b x)}\right ) \, dx}{b} \\ & = -\frac {i x^4}{4}+\frac {x^3 \log \left (1-e^{2 i (a+b x)}\right )}{b}-\frac {3 i x^2 \operatorname {PolyLog}\left (2,e^{2 i (a+b x)}\right )}{2 b^2}+\frac {(3 i) \int x \operatorname {PolyLog}\left (2,e^{2 i (a+b x)}\right ) \, dx}{b^2} \\ & = -\frac {i x^4}{4}+\frac {x^3 \log \left (1-e^{2 i (a+b x)}\right )}{b}-\frac {3 i x^2 \operatorname {PolyLog}\left (2,e^{2 i (a+b x)}\right )}{2 b^2}+\frac {3 x \operatorname {PolyLog}\left (3,e^{2 i (a+b x)}\right )}{2 b^3}-\frac {3 \int \operatorname {PolyLog}\left (3,e^{2 i (a+b x)}\right ) \, dx}{2 b^3} \\ & = -\frac {i x^4}{4}+\frac {x^3 \log \left (1-e^{2 i (a+b x)}\right )}{b}-\frac {3 i x^2 \operatorname {PolyLog}\left (2,e^{2 i (a+b x)}\right )}{2 b^2}+\frac {3 x \operatorname {PolyLog}\left (3,e^{2 i (a+b x)}\right )}{2 b^3}+\frac {(3 i) \text {Subst}\left (\int \frac {\operatorname {PolyLog}(3,x)}{x} \, dx,x,e^{2 i (a+b x)}\right )}{4 b^4} \\ & = -\frac {i x^4}{4}+\frac {x^3 \log \left (1-e^{2 i (a+b x)}\right )}{b}-\frac {3 i x^2 \operatorname {PolyLog}\left (2,e^{2 i (a+b x)}\right )}{2 b^2}+\frac {3 x \operatorname {PolyLog}\left (3,e^{2 i (a+b x)}\right )}{2 b^3}+\frac {3 i \operatorname {PolyLog}\left (4,e^{2 i (a+b x)}\right )}{4 b^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.79 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.82 \[ \int x^3 \cot (a+b x) \, dx=\frac {i b^4 x^4+4 b^3 x^3 \log \left (1-e^{-i (a+b x)}\right )+4 b^3 x^3 \log \left (1+e^{-i (a+b x)}\right )+12 i b^2 x^2 \operatorname {PolyLog}\left (2,-e^{-i (a+b x)}\right )+12 i b^2 x^2 \operatorname {PolyLog}\left (2,e^{-i (a+b x)}\right )+24 b x \operatorname {PolyLog}\left (3,-e^{-i (a+b x)}\right )+24 b x \operatorname {PolyLog}\left (3,e^{-i (a+b x)}\right )-24 i \operatorname {PolyLog}\left (4,-e^{-i (a+b x)}\right )-24 i \operatorname {PolyLog}\left (4,e^{-i (a+b x)}\right )}{4 b^4} \]

[In]

Integrate[x^3*Cot[a + b*x],x]

[Out]

(I*b^4*x^4 + 4*b^3*x^3*Log[1 - E^((-I)*(a + b*x))] + 4*b^3*x^3*Log[1 + E^((-I)*(a + b*x))] + (12*I)*b^2*x^2*Po
lyLog[2, -E^((-I)*(a + b*x))] + (12*I)*b^2*x^2*PolyLog[2, E^((-I)*(a + b*x))] + 24*b*x*PolyLog[3, -E^((-I)*(a
+ b*x))] + 24*b*x*PolyLog[3, E^((-I)*(a + b*x))] - (24*I)*PolyLog[4, -E^((-I)*(a + b*x))] - (24*I)*PolyLog[4,
E^((-I)*(a + b*x))])/(4*b^4)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 239 vs. \(2 (82 ) = 164\).

Time = 0.49 (sec) , antiderivative size = 240, normalized size of antiderivative = 2.38

method result size
risch \(-\frac {i x^{4}}{4}-\frac {3 i \operatorname {polylog}\left (2, -{\mathrm e}^{i \left (b x +a \right )}\right ) x^{2}}{b^{2}}-\frac {3 i \operatorname {polylog}\left (2, {\mathrm e}^{i \left (b x +a \right )}\right ) x^{2}}{b^{2}}-\frac {2 i a^{3} x}{b^{3}}+\frac {\ln \left (1+{\mathrm e}^{i \left (b x +a \right )}\right ) x^{3}}{b}+\frac {\ln \left (1-{\mathrm e}^{i \left (b x +a \right )}\right ) x^{3}}{b}+\frac {a^{3} \ln \left (1-{\mathrm e}^{i \left (b x +a \right )}\right )}{b^{4}}+\frac {2 a^{3} \ln \left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b^{4}}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (b x +a \right )}-1\right )}{b^{4}}-\frac {3 i a^{4}}{2 b^{4}}+\frac {6 i \operatorname {polylog}\left (4, -{\mathrm e}^{i \left (b x +a \right )}\right )}{b^{4}}+\frac {6 i \operatorname {polylog}\left (4, {\mathrm e}^{i \left (b x +a \right )}\right )}{b^{4}}+\frac {6 \operatorname {polylog}\left (3, -{\mathrm e}^{i \left (b x +a \right )}\right ) x}{b^{3}}+\frac {6 \operatorname {polylog}\left (3, {\mathrm e}^{i \left (b x +a \right )}\right ) x}{b^{3}}\) \(240\)

[In]

int(x^3*cot(b*x+a),x,method=_RETURNVERBOSE)

[Out]

-1/4*I*x^4-3*I/b^2*polylog(2,-exp(I*(b*x+a)))*x^2-3*I/b^2*polylog(2,exp(I*(b*x+a)))*x^2-2*I/b^3*a^3*x+1/b*ln(1
+exp(I*(b*x+a)))*x^3+1/b*ln(1-exp(I*(b*x+a)))*x^3+1/b^4*a^3*ln(1-exp(I*(b*x+a)))+2/b^4*a^3*ln(exp(I*(b*x+a)))-
1/b^4*a^3*ln(exp(I*(b*x+a))-1)-3/2*I/b^4*a^4+6*I/b^4*polylog(4,-exp(I*(b*x+a)))+6*I/b^4*polylog(4,exp(I*(b*x+a
)))+6/b^3*polylog(3,-exp(I*(b*x+a)))*x+6/b^3*polylog(3,exp(I*(b*x+a)))*x

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 306 vs. \(2 (78) = 156\).

Time = 0.29 (sec) , antiderivative size = 306, normalized size of antiderivative = 3.03 \[ \int x^3 \cot (a+b x) \, dx=\frac {-6 i \, b^{2} x^{2} {\rm Li}_2\left (\cos \left (2 \, b x + 2 \, a\right ) + i \, \sin \left (2 \, b x + 2 \, a\right )\right ) + 6 i \, b^{2} x^{2} {\rm Li}_2\left (\cos \left (2 \, b x + 2 \, a\right ) - i \, \sin \left (2 \, b x + 2 \, a\right )\right ) - 4 \, a^{3} \log \left (-\frac {1}{2} \, \cos \left (2 \, b x + 2 \, a\right ) + \frac {1}{2} i \, \sin \left (2 \, b x + 2 \, a\right ) + \frac {1}{2}\right ) - 4 \, a^{3} \log \left (-\frac {1}{2} \, \cos \left (2 \, b x + 2 \, a\right ) - \frac {1}{2} i \, \sin \left (2 \, b x + 2 \, a\right ) + \frac {1}{2}\right ) + 6 \, b x {\rm polylog}\left (3, \cos \left (2 \, b x + 2 \, a\right ) + i \, \sin \left (2 \, b x + 2 \, a\right )\right ) + 6 \, b x {\rm polylog}\left (3, \cos \left (2 \, b x + 2 \, a\right ) - i \, \sin \left (2 \, b x + 2 \, a\right )\right ) + 4 \, {\left (b^{3} x^{3} + a^{3}\right )} \log \left (-\cos \left (2 \, b x + 2 \, a\right ) + i \, \sin \left (2 \, b x + 2 \, a\right ) + 1\right ) + 4 \, {\left (b^{3} x^{3} + a^{3}\right )} \log \left (-\cos \left (2 \, b x + 2 \, a\right ) - i \, \sin \left (2 \, b x + 2 \, a\right ) + 1\right ) + 3 i \, {\rm polylog}\left (4, \cos \left (2 \, b x + 2 \, a\right ) + i \, \sin \left (2 \, b x + 2 \, a\right )\right ) - 3 i \, {\rm polylog}\left (4, \cos \left (2 \, b x + 2 \, a\right ) - i \, \sin \left (2 \, b x + 2 \, a\right )\right )}{8 \, b^{4}} \]

[In]

integrate(x^3*cot(b*x+a),x, algorithm="fricas")

[Out]

1/8*(-6*I*b^2*x^2*dilog(cos(2*b*x + 2*a) + I*sin(2*b*x + 2*a)) + 6*I*b^2*x^2*dilog(cos(2*b*x + 2*a) - I*sin(2*
b*x + 2*a)) - 4*a^3*log(-1/2*cos(2*b*x + 2*a) + 1/2*I*sin(2*b*x + 2*a) + 1/2) - 4*a^3*log(-1/2*cos(2*b*x + 2*a
) - 1/2*I*sin(2*b*x + 2*a) + 1/2) + 6*b*x*polylog(3, cos(2*b*x + 2*a) + I*sin(2*b*x + 2*a)) + 6*b*x*polylog(3,
 cos(2*b*x + 2*a) - I*sin(2*b*x + 2*a)) + 4*(b^3*x^3 + a^3)*log(-cos(2*b*x + 2*a) + I*sin(2*b*x + 2*a) + 1) +
4*(b^3*x^3 + a^3)*log(-cos(2*b*x + 2*a) - I*sin(2*b*x + 2*a) + 1) + 3*I*polylog(4, cos(2*b*x + 2*a) + I*sin(2*
b*x + 2*a)) - 3*I*polylog(4, cos(2*b*x + 2*a) - I*sin(2*b*x + 2*a)))/b^4

Sympy [F]

\[ \int x^3 \cot (a+b x) \, dx=\int x^{3} \cot {\left (a + b x \right )}\, dx \]

[In]

integrate(x**3*cot(b*x+a),x)

[Out]

Integral(x**3*cot(a + b*x), x)

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 391 vs. \(2 (78) = 156\).

Time = 0.36 (sec) , antiderivative size = 391, normalized size of antiderivative = 3.87 \[ \int x^3 \cot (a+b x) \, dx=-\frac {i \, {\left (b x + a\right )}^{4} - 4 i \, {\left (b x + a\right )}^{3} a + 6 i \, {\left (b x + a\right )}^{2} a^{2} + 4 \, a^{3} \log \left (\sin \left (b x + a\right )\right ) - 24 \, b x {\rm Li}_{3}(-e^{\left (i \, b x + i \, a\right )}) - 24 \, b x {\rm Li}_{3}(e^{\left (i \, b x + i \, a\right )}) + 4 \, {\left (-i \, {\left (b x + a\right )}^{3} + 3 i \, {\left (b x + a\right )}^{2} a - 3 i \, {\left (b x + a\right )} a^{2}\right )} \arctan \left (\sin \left (b x + a\right ), \cos \left (b x + a\right ) + 1\right ) + 4 \, {\left (i \, {\left (b x + a\right )}^{3} - 3 i \, {\left (b x + a\right )}^{2} a + 3 i \, {\left (b x + a\right )} a^{2}\right )} \arctan \left (\sin \left (b x + a\right ), -\cos \left (b x + a\right ) + 1\right ) + 12 \, {\left (i \, {\left (b x + a\right )}^{2} - 2 i \, {\left (b x + a\right )} a + i \, a^{2}\right )} {\rm Li}_2\left (-e^{\left (i \, b x + i \, a\right )}\right ) + 12 \, {\left (i \, {\left (b x + a\right )}^{2} - 2 i \, {\left (b x + a\right )} a + i \, a^{2}\right )} {\rm Li}_2\left (e^{\left (i \, b x + i \, a\right )}\right ) - 2 \, {\left ({\left (b x + a\right )}^{3} - 3 \, {\left (b x + a\right )}^{2} a + 3 \, {\left (b x + a\right )} a^{2}\right )} \log \left (\cos \left (b x + a\right )^{2} + \sin \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) + 1\right ) - 2 \, {\left ({\left (b x + a\right )}^{3} - 3 \, {\left (b x + a\right )}^{2} a + 3 \, {\left (b x + a\right )} a^{2}\right )} \log \left (\cos \left (b x + a\right )^{2} + \sin \left (b x + a\right )^{2} - 2 \, \cos \left (b x + a\right ) + 1\right ) - 24 i \, {\rm Li}_{4}(-e^{\left (i \, b x + i \, a\right )}) - 24 i \, {\rm Li}_{4}(e^{\left (i \, b x + i \, a\right )})}{4 \, b^{4}} \]

[In]

integrate(x^3*cot(b*x+a),x, algorithm="maxima")

[Out]

-1/4*(I*(b*x + a)^4 - 4*I*(b*x + a)^3*a + 6*I*(b*x + a)^2*a^2 + 4*a^3*log(sin(b*x + a)) - 24*b*x*polylog(3, -e
^(I*b*x + I*a)) - 24*b*x*polylog(3, e^(I*b*x + I*a)) + 4*(-I*(b*x + a)^3 + 3*I*(b*x + a)^2*a - 3*I*(b*x + a)*a
^2)*arctan2(sin(b*x + a), cos(b*x + a) + 1) + 4*(I*(b*x + a)^3 - 3*I*(b*x + a)^2*a + 3*I*(b*x + a)*a^2)*arctan
2(sin(b*x + a), -cos(b*x + a) + 1) + 12*(I*(b*x + a)^2 - 2*I*(b*x + a)*a + I*a^2)*dilog(-e^(I*b*x + I*a)) + 12
*(I*(b*x + a)^2 - 2*I*(b*x + a)*a + I*a^2)*dilog(e^(I*b*x + I*a)) - 2*((b*x + a)^3 - 3*(b*x + a)^2*a + 3*(b*x
+ a)*a^2)*log(cos(b*x + a)^2 + sin(b*x + a)^2 + 2*cos(b*x + a) + 1) - 2*((b*x + a)^3 - 3*(b*x + a)^2*a + 3*(b*
x + a)*a^2)*log(cos(b*x + a)^2 + sin(b*x + a)^2 - 2*cos(b*x + a) + 1) - 24*I*polylog(4, -e^(I*b*x + I*a)) - 24
*I*polylog(4, e^(I*b*x + I*a)))/b^4

Giac [F]

\[ \int x^3 \cot (a+b x) \, dx=\int { x^{3} \cot \left (b x + a\right ) \,d x } \]

[In]

integrate(x^3*cot(b*x+a),x, algorithm="giac")

[Out]

integrate(x^3*cot(b*x + a), x)

Mupad [F(-1)]

Timed out. \[ \int x^3 \cot (a+b x) \, dx=\int x^3\,\mathrm {cot}\left (a+b\,x\right ) \,d x \]

[In]

int(x^3*cot(a + b*x),x)

[Out]

int(x^3*cot(a + b*x), x)